PRELIMINARY STUDY OF LAYER-DEPENDENT CORRECTIONS

Adam Para, Shin-Shan Yu Fermilab

ILC Dual-readout Calorimeter Meeting June 26th, 2007

Overview and MC Samples

Great improvement of energy resolution when using the Cerenkov info

- $rightharpoonup f_{em} \longleftrightarrow rac{E_{cerpho}}{E_{ion}}$
- \mathcal{E}_{ion} and E_{cerpho} were obtained by summing up the ionization energy from all active layers and energy of Cerenkov photons from all Cerenkov layers, respectively.
- Improvements have been seen in both cases: single particle and jet.

rightharpoons Can we gain further improvements by using f_{em} from each layer?

- \sim On April 3rd, we showed that there's a \sim 6% improvement with respect to the layer-independent correction by dividing data into 12 f_{em} bins.
- Can we make it better than 6%?
- Will focus on the configuration: 3 mm active layer, 2 mm Cerenkov layer and 0 mm absorber layer.
- Will focus on the 10 GeV electrons and pions

MC samples

- e-_E10.0_N10000_Tac0._Tch1.0_Tab0.0_MactLeadGlass_MabsLeadGlass.root
- pi-_E10.0_N10000_Tac0._Tch1.0_Tab0.0_MactLeadGlass_MabsLeadGlass.root

Previous Strategy

We wish to minimize:
$$\sum_{i}^{N_{ev}} \left\{ E_{input} - \sum_{j}^{N_{layer}} E_{ion}^{j} \beta(f_{em}^{j}) \right\}^{2}$$

- Layers with similar f_{em} should have similar energy corrections. So we assume the correction formula $\beta(f_{em})$ only depends on f_{em} , not the physical location (or layer index).
- To guess the functional form of β , we binned the f_{em}^j into 12 bins and fit the following 12 free parameters g_k by minimizing the following term in MINUIT

$$\sum_{i}^{N_{ev}} \left\{ E_{input} - \sum_{k}^{N_{bin}} E_{ion}^{k} \mathcal{G}_{k} \right\}^{2}$$

- \subset E_{ion}^k is the sum of ionization energy for layers with f_{em} in the same bin
- 12 bins are determined by giving similar number of events in each bin

Summary from Last Presentation

10 GeV Electron and Pion Energy Response

Uncorrected response of pions

Layer-dependent correction π

Corrected response of pions

Layer-independent correction

Corrected response of pions Layer-dependent correction *e*

Corrected response of electrons

ILC Dual-readout Calorimeter Meeting, Shin-Shan Yu – 4

Response and Resolution

Resolution

Kinetic Energy [GeV]

Relative improvement

Kinetic Energy [GeV]

New

E_{ion} and f_{em} vs. Layer

New

- \sim We should apply the same f_{em} corrections to electron energy
- Can electrons introduce extra constraints?
- Try
 - rightharpoonup Combine electron and pion sample and fit for $\beta(f_{em})$ together
 - Have tried two Gaussians with different widths when fitting the combined sample of electrons and pions
 - → give the same result if only fitting one particle type
 - → fit converges but give worse response and resolution (30%) when combining electrons and pions. Discarded.
 - rightharpoonup Re-bin f_{em} so that f_{em} with similar value to that of electron is grouped to one bin
 - rightharpoonup For this bin, fix $\beta(f_{em})$ to 1.66667

How to Re-bin f_{em}

- rightharpoonup Check the mean electron ionization energy in bins of f_{em}
- Group the central 10 bins together
 - For both electrons and pions, do not fit for correction, apply for only sampling fraction correction 1.66667
- The rest of the bins are combined in bins of 2e-5. For $f_{em} > 5.6e-4$, consider as overflows.

Results of Combining e, π (12bins)

Layer-dependent correction π

Corrected response of pions

Corrected response of electrons

Corrected electron response

12-bin correction factors

Corrected pion response

Corrected response of pions

Results of Re-binning (25bins)

Layer-dependent correction π

Corrected response of pions

Corrected electron response

Corrected response of electrons

25-bin correction factors

Corrected pion response

Corrected response of pions

Results of Re-binning and Combining e,π

Layer-dependent correction π

Corrected response of pions

Corrected electron response

Corrected response of electrons

25-bin correction factors

Corrected pion response

Corrected response of pions

Conclusion and Plans

- additional 0.5% improvement by rebinning and fixing correction factor to 1.66667 for layers with f_{em} between 1.2e-4 and 2.2e-4
- → but electron energy is over corrected by 5%!
- Need to compromise between over-correcting electron energy and better pion energy resolution
- riangleq Have tried also only grouping the central 5 f_{em} bins. Conclusions unchanged.
- Any more suggestions?
- Wait for longitudinal segmentation?